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Summary 

Treatment of the p3 -alkylidyne clusters [Fe, W(p, -CC6HqMe-4)(p-CO)- 
(CO),(q-C5H5)] and [CO,W(~~-CM~)(CO),(Q-C,H~)] with PPh,H affords a 
series of new p-phosphido-p-hydrido alkylidyne complexes which undergo 
protonation with HBF, -Et,0 to give cationic derivatives. The X-ray structure of 
[CO,W(CI-H)(CI~ -CMe)(p-PPh,)(CO),(r]-C5Hg)] has been determined. 

We have recently observed that treatment of the alkylidyne clusters 
[Fe, W(p, -CR)(p-CO)(CO)s (v-C5 H5 )] , I, with an excess of PPh, H in CH2 Cl? 
affords good yields of the ~1 3 -acyl complex [Fe, W(p, -OCCH, R)(p-PPh,), - 
(CO),(r&H, )] (R = C,H,Me-4) [l] . The conversion of the p3 -alkylidyne 
moiety in I to a p3 -acyl ligand formally involves migration of hydrogen from 
metal-bound PPhzH ligands to the ~1~ -C carbon atom in I, followed by migra- 
tion of the resulting alkyl to a metal carbonyl. We now report that by varying 
the reaction conditions hydrogen migration may be exclusively directed to 
an Fe-W bond, affording new p-hydrido-p-phosphido alkylidyne clusters. 

Treatment of I [Z] with one equivalent of PPh,H in dilute Et,0 solutions 
initially affords an orange brown solution of the unstable complex II, analo- 
gous to the known complex [Fe2W(p,-CR)(p-CO)(CO),(PMe,Ph),(~-CSH,)] and 
[Co, W(p 3 -CR)(CO), (PMe3 )(v - C5 H5 )] [ 31. Compound II rearranges at 20°C 
(E&O) and following chromatography on alumina good yields (ca. 70%) of 
the Cc-hydrido-p-phosphido cluster III [ 41 are obtained. The 31P- {‘H} and 
‘H NMR data confirm that the p-PPh, and p-H ligands bridge Fe-W bonds 
and the 13C- { ‘H} NMR spectrum shows a characteristic resonance for the 
p-CR moiety at 6 270.5 ppm (J(WC) 110 Hz) [5]. 

Protonation of III with HBF4 * Et,0 in CH2 Clz affords the bis-p-hydrido 
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complex IV [S] . This reaction is readily reversible and attempts to isolate IV 
in the absence of HBF,, l Et20 led to quantitative recovery of III. The ‘H NMR 
spectrum of IV shows two bridging hydride resonances and the absence of 
ls3W satellites on the signal at 6 -26.69 ppm indicates that protonation has 
occurred at the Fe-Fe bond (Scheme 1). 
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Scheme 1. (i) PPh,H; (ii) -CO; (iii) HBF, l Et,O; (iv) 2 X PPh,H: -3 CO, 1ll’C; (v) 43,: R = C, 
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Compound III does not react further with PPhlH at 20°C but on refluxing 
in toluene good yields (ca. 70%) of the tris-p-phosphido cluster V [7] are ob- 
tained. The 31P-(1H) NMR data confirm that all three edges of the Fe,W 
triangle of metal atoms are now bridged by p-PPh, ligands and the ‘H NMR 
spectrum has a resonance at 6 -4.55 ppm which may be assigned to a terminal 
hydride ligand on tungsten. 

Complex V is more nucleophilic than III and protonation with HBF, * Et20 
results in irreversible loss of dihydrogen affording the cationic coordinatively 
unsaturated, 46 cluster valence electron species VI [ 81. In the 13C- {‘H} NMR 
spectrum the p3 -C resonance is unusually deshielded (8 312.2 ppm) suggesting 
that the positive charge in this cation may be at least partially localised on the 
p3 -C carbon atom. 

The closely related Co,W cluster VII (Scheme 2) also reacts with PPh,H 
to give high yields (> 80%) of the p-hydrido-p-phosphido species IX [9]. The 
presumed intermediated VIII is not detected under the more vigorous reaction 
conditions (111°C) employed in this reaction. The molecular structure of IX 
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Scheme 2. (1) PPh,H; (ii) -CO; (iii) HBF, *Et.,O. 
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Fig. 1. Molecular structure of CCO,W(L(-H)(~~-CM~)(~~-PP~~)(CO),(~-C~H,)] (IX). The unit cell contains 
two very similar crystallographically independent molecules of the complex of which only one is shown. 

w(l)-Co(ll) 2.792(l), W(l)--C0(12) 2.730(l), W(l)-C(ll) 2.086(g). W(l)-H(1) 1.80(10). Co(ll)- 
Co(12) 2.470(l), Co(ll)-P(1) 2.176(2), Co(ll)-C(ll) 1.964(B), Co(ll)-H(1) 1.48(12). Co(l2)-P(1) 
2.172(2). Co(lZ)-C(ll) 1.907(B) A: Co(ll)--W(l)-co(l2) 53.1(l), ~(1)-~0(11)--c0(12) 62.1(l), 
w(1)-C0(l2)<0(11) 64.7(l), Co(ll)-P(l)--co(l2) 69.2(l), W(l)-H(l)-Co(ll) 116(7)‘. 

[lo] (Fig. 1) shows a Co, W triangle of metal atoms capped by a p3 -CMe 
ligand and in contrast with III the cl-PPh, ligand bridges the homonuclear 
(Co-Co) metal-metal bond. One of the two Co-W bonds is bridged by an 
hydride ligand which is consistent with the ‘H NMR spectrum, which shows 
a doublet at 6 -13.92 ppm (J(PH) 25, J(WH) 44 Hz) with *83W satellites. 

Protonation of IX with HBF, - Et,0 occurs at the Co-W bond 
affording the mirror symmetric bis-p-hydrido complex X’[ll] which shows a 
doublet resonance in the ‘H NMR spectrum for the two chemically equivalent 
p-H ligands. Like IV, compound X readily deprotonates in the absence of 
HBF, *Et?O. 

It is apparent that PPhlH ligands bound to small alkylidyne clusters will 
undergo facile, thermally induced, oxidative addition of P’-H to a metal-metal 
bond. In contrast, complexes such as [ Ru3 (CO),(PPh,H),] require photolysis 
to induce hydrogen migration from phosphorus, a process which is charac- 
terised by the formation of a complex mixture of products [ 121. 

The results described herein together with our previous observation of 
hydrogen migration from metal-bound PPh?H ligands to an alkylidyne carbon 
atom [ 11, suggest that attack of PPh,H on preformed homo- or heteronuclear 
alkylidyne or alkylidene clusters may offer a useful approach for the synthesis 
of new phosphido-bridged derivatives. 
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